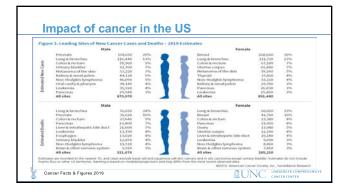
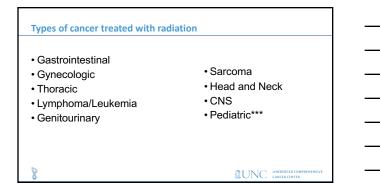
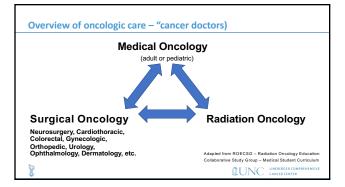


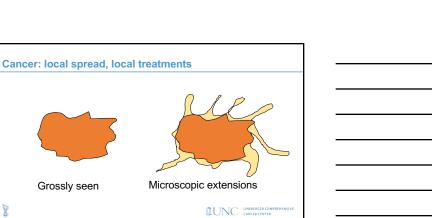
Goals/Objectives

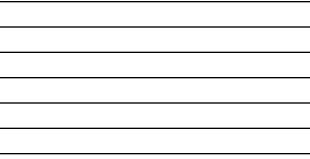

- Understanding the logistics of radiation treatments
- Understanding how radiation works
- Discussion of integration of multiple therapies for patients with cancer
- Introduction to different types of therapeutic radiation

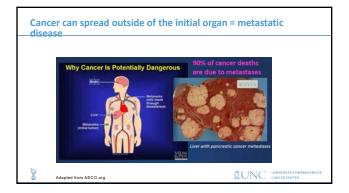

 What is cancer and its impact? 	
 How do we treat cancer? 	
 What is radiation? 	
Case example	
 Treatment planning examples 	

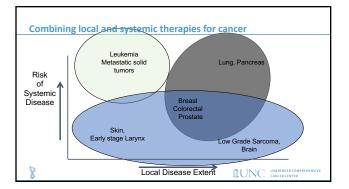
 In 2018 there were 17 million new cancer diagnoses, and 9.5 million cancer deaths worldwide. In 2030, this is anticipated to increase to 27.5 million new cases and 16.3 million deaths 			
Giobal Cancer Facts & Figures 2018			
s receive radiation			
NG, Thomas SJ, Burton KE, Jefferies SJ. Defining the tumour and olumes for radiotherapy. Cancer Imaging. 2004;4(2):153-161.			

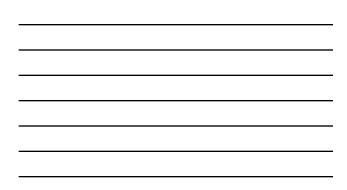

Cause of mortality in the US	
• Heart disease 635,000 • Cancer 598,000	
Accidents 161,000 Lung disease 154,000	
8	CDC 2017






Outline	
 What is cancer and its impact? How do we treat cancer? What is radiation? Case example Treatment planning examples 	
8	




Palliative – to help with a symptom (not curative) Pain Bleeding Neurologic symptoms Definitive – curative intent without surgery Neoadjuvant – before surgery Adjuvant – after surgery

For Educational Use Only

How to choose local therapies (surgery, RT or	both)
 Radiation may allow a smaller surgery Breast – mastectomy vs partial mastectomy Extremity sarcoma – amputation vs wide loc Adjuvant RT (based on surgical findings) Lung H&N Prostate Brain 	
 Neoadjuvant RT (RT before surgery) Rectal 	
58	

When is RT often used alone (instead of surgery) ? Examples include: Early or advanced head & neck cancer Advanced cervical cancer Prostate Patients who are not candidates for surgery Surgeries that would otherwise be too extensive Cancers that outcomes are similar between radiation and surgery Careful risk-benefit assessment

Role of chemotherapy		Sustamia	
	Systemic Radiosensitization <u>Therapy</u>		
Breast		$-\checkmark$	
Colorectal	\checkmark	\checkmark	
Cervix	✓		
Head & Neck	✓		
Lung	\checkmark	\checkmark	
Emerging roles of immunotherapy and targeted therapies!			
8	ũ	UNC LINEBERGER COMPREHENSIVE CANCER CENTER	

X

Outline • What is cancer and its impact? · How do we treat cancer? What is radiation? Case example Treatment planning examples

Radiation Therapy: Brief History

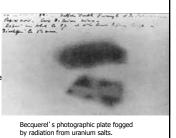
· 1895 Roentgen discovers x-rays

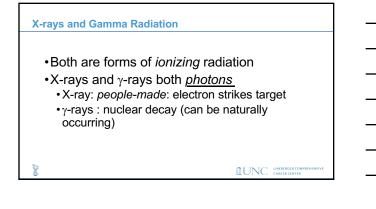
1896 First diagnostic x-ray
 locate piece of knife from stabbing

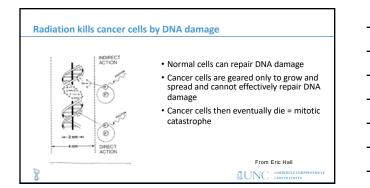
1897 Fruend treats patient with hairy mole
 1898 Curies report discovery of radium

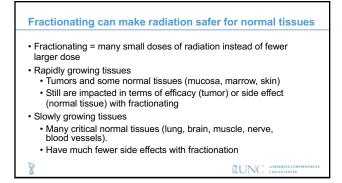
1898 Becquerel discovers radioactivity

• 1922 Coutrard/Hautant report cure larynx cancer

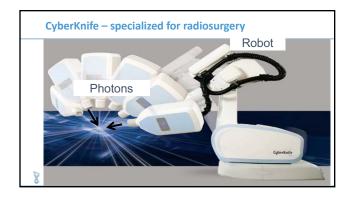

From Hall (Radiobiology for Radiobiologists), Halperin, Perez and Brady




Radioactivity

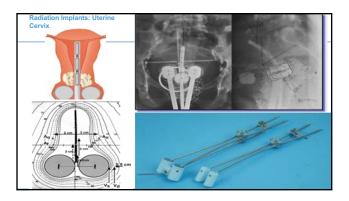

• 1896 - Henri Becquerel

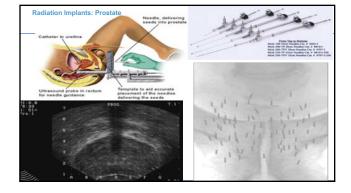
- · experimenting with uranium salts
- photographic plate exposed
- · Discovered radioactivity while experimenting with uranium salts which exposed a photographic plate
- Pierre and Marie Curie discover radium and polonium in 1898 - These elements emitted ${\it \alpha},\,{\it \beta}\,{\rm and}\,\,{\it \gamma}$
- rays



Dose and fractionation

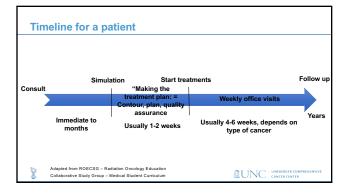
- Radiation dose is measured in the unit Gray (Gy)
- Dose varies based on treatment site, type of tumor, other therapies
- Typically delivered 5 days per week (M-F) for up to 7 weeks
- Usually the dose is 1.8-2.0 Gy per day (many exceptions)

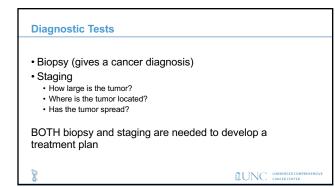




1			

 Brachytherapy – implanted rad Procedure based radiation technique Can involved implanted seeds (that remain in place indefinitely) Can involved temporary catheters (that are removed 	• Sites • Prostate • Cervix • Endometrial • Breast • Esophageal • Sarcoma • Skin	
catheters (that are removed after radiation treatment)		
8		





Outline What is cancer and its impact? How do we treat cancer? What is radiation? Case example Treatment planning examples

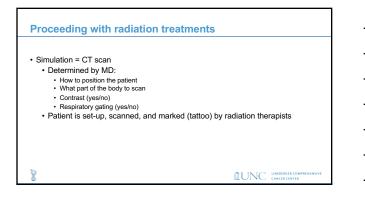

Case - 57 y/o female presents to PCP with cough and shortness of breath for the past 6 weeks · 25 lb weight loss • Current smoker, 2 packs per day x 30 years Physical Examination: decreased breath sounds in upper right lung Chest x-ray – right upper lobe lung mass Concerning for lung cancer Adapted from ROECSG – Radiation Oncology Education Collaborative Study Group – Medical Student Curriculum

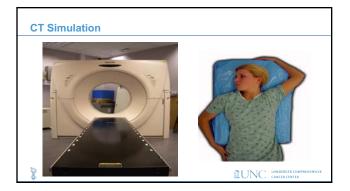
Diagnostic Tests and Treat	ment
 Biopsy – guided with a CT scan OR by bron 	ischoscopy
Staging imaging – PET-CT Brain MRI	
 For this patient – biopsy is adenocarcinoma mass, mediastinal lymph nodes. No diseas cell lung cancer 	, staging shows the known right upper lobe e outside of the chest. Stage III non-small
TREATMENT: 30 radiation treatments, con- immunotherapy	current chemotherapy, adjuvant
8	

What does the radiation oncologist do in clinic?

Full and extensive history and physical relating to cancer diagnosis
 Although you are treating the tumor, knowing your patient's other medical problems and "performance status" will help you care for them

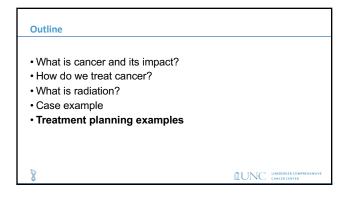
Performance Status

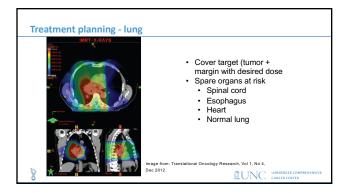

8

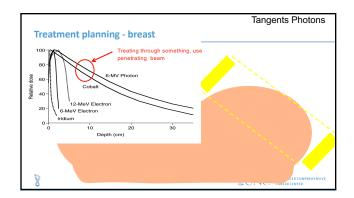

8

What do radiation oncologists initial consult?	think about during
 Physical exam Complete physical exam (focused) More extensive exam of pertinent ana Breast Prostate Glioblastoma Bone metastasis Lung Performance status – how is the patie daily tasks, working, etc 	Ĵ
8	

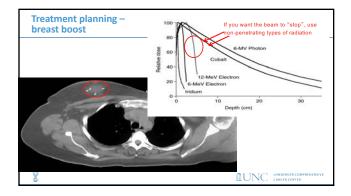
What do radiation onco nitial consult?	ologists think about during
Assessment Always stage the patient Early breast Intermediate-risk prostate Glioblastoma multiforme Bone metastasis from lung Lung Cancer	pT1bN0M0 Stage IA cT2bN0M0, PSA 14.5, GS 3+4 WH0 grade IV cT3N3M1 Stage IV cT3N3M1 Stage III
 Plan Could involve surgery, syst Does not always involve R¹ 	

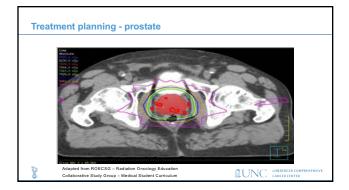


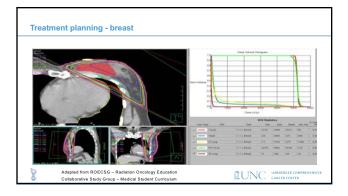

Side effects of radiation

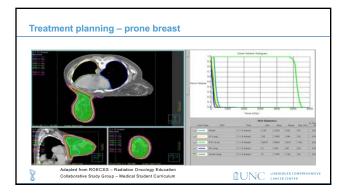

- Fatigue
- Otherwise depends on treatment site/volume (and chemotherapy) where the radiation is pointed!
- Stage III lung
- Stage III IUng
 Acute (short-term)
 Esophagitis "sticking" sensation when swallowing, pain with swallowing
 Chronic (long-term)
 Radiation pneumonitis lung inflammation
 Pericarditis inflammation of the heart
 Cardiovascular disease due to radiation the heart and coronary arteries
 Secondary malignancy

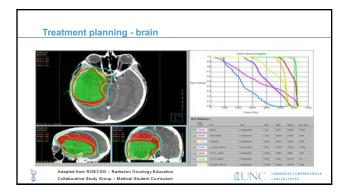
 $\mathbb{D}UNC \left| \begin{smallmatrix} \text{Lineberger comp} \\ \text{cancer center} \end{smallmatrix} \right|$

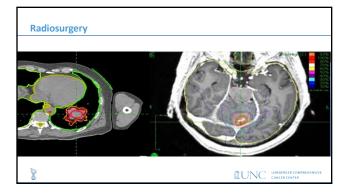

Other radiation side effects – where the bear	m is aimed!
 Pelvis – diarrhea, dysuria, bowel obstruction menopause, erectile dysfunction 	, ulceration,
 Brain – nausea, headache, radiation necrosis problems 	s, memory
Breast – skin irritation, scar tissue, brachial p	olexus injury
• H&N – dry mouth, irritation inside mouth, sl	kin irritation
8	











Radiosurgery/Stereotactic Body R	adiotherapy
Specialized technique High RT dose per fraction Tight margin Image guidance Localization at time of treatment	
8	

Summary

- · Oncologic care is complicated and requires a team
- · Radiation can be used alone to cure cancer, or with other modalities
- The use of Radiation/Surgery/Chemo depends on:
 - The case of reduction of generations of the second s
- Radiation works by causing damage to the DNA.
- · There are many types of radiation techniques
- · External beam radiation (x-rays or electrons)
- Radiosurgery
 Brachytherapy
- Intraoperative radiotherapy
- The job of the radiation oncologist includes working with a multidisciplinary team, selecting and designing RT treatments (ANATOMYI), managing treatment toxicities.

References	
 Some slides courtesy of Dr. Larry Marks Dr. Jessica Wilson ROECSG (Radiation 	Oncology Education Collaborative Study Group)
 ASTRO.org – Radiat 	y 101 ew of RT for Healthcare Professionals ion Oncology for Medical Students er, Clinical Radiation Oncology, 4 th ed
X	