Introduction to Radiation Oncology

Ashley A. Weiner, MD, PhD
September 18, 2019

Goals/Objectives

- Understanding the logistics of radiation treatments
- Understanding how radiation works
- Discussion of integration of multiple therapies for patients with cancer
- Introduction to different types of therapeutic radiation
Outline

- What is cancer and its impact?
- How do we treat cancer?
- What is radiation?
- Case example
- Treatment planning examples

What is cancer?

- Hundreds of different diseases – all characterized by uncontrolled, abnormal growth of cells
- Cancer can cause local problems (from a tumor) or systemic problems (from metastasis)

Adapted from asco.org
Global impact of cancer

- In 2018 there were 17 million new cancer diagnoses, and 9.5 million cancer deaths worldwide.
- In 2030, this is anticipated to increase to 27.5 million new cases and 16.3 million deaths.

Global Cancer Facts & Figures 2018

- More than half of all cancer patients receive radiation treatments

Cause of mortality in the US

- Heart disease 635,000
- Cancer 598,000
- Accidents 161,000
- Lung disease 154,000

CDC 2017
Impact of cancer in the US

<table>
<thead>
<tr>
<th>Types of Cancer</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>174,650</td>
<td>20%</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>114,440</td>
<td>13%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>78,560</td>
<td>9%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>61,700</td>
<td>7%</td>
</tr>
<tr>
<td>Melanoma of the skin</td>
<td>57,220</td>
<td>7%</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>44,120</td>
<td>5%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>41,090</td>
<td>5%</td>
</tr>
<tr>
<td>Oral cavity & oropharynx</td>
<td>38,340</td>
<td>4%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>35,920</td>
<td>4%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>29,940</td>
<td>3%</td>
</tr>
<tr>
<td>All sites</td>
<td>870,970</td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>268,600</td>
<td>30%</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>111,710</td>
<td>13%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>67,100</td>
<td>7%</td>
</tr>
<tr>
<td>Uterine corpus</td>
<td>61,880</td>
<td>7%</td>
</tr>
<tr>
<td>Melanoma of the skin</td>
<td>39,260</td>
<td>5%</td>
</tr>
<tr>
<td>Thyroid</td>
<td>37,510</td>
<td>4%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>33,110</td>
<td>4%</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>29,790</td>
<td>3%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>26,830</td>
<td>3%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>25,460</td>
<td>3%</td>
</tr>
<tr>
<td>All sites</td>
<td>891,480</td>
<td></td>
</tr>
</tbody>
</table>

Estimates are rounded to the nearest 10, and cases exclude basal cell and squamous cell skin cancers and in situ carcinomas except urinary bladder. Estimates do not include Puerto Rico or other US territories. Rankings are based on modeled projections and may differ from the most recent observed data.

©2019, American Cancer Society, Inc., Surveillance Research

Types of cancer treated with radiation

- Gastrointestinal
- Gynecologic
- Thoracic
- Lymphoma/Leukemia
- Genitourinary
- Sarcoma
- Head and Neck
- CNS
- Pediatric***
Outline

• What is cancer and its impact?
• How do we treat cancer?
• What is radiation?
• Case example
• Treatment planning examples

Treatment of cancer

• Local therapy
 • Surgery
 • Radiation

• Systemic therapy
 • Chemotherapy
 • Hormonal therapy
 • Targeted therapy
 • Immunotherapy
Overview of oncologic care – “cancer doctors”

Medical Oncology
(adult or pediatric)

Surgical Oncology
Neurosurgery, Cardiothoracic, Colorectal, Gynecologic, Orthopedic, Urology, Ophthalmology, Dermatology, etc.

Radiation Oncology

Cancer: local spread, local treatments

Grossly seen
Microscopic extensions

Adapted from ROECG – Radiation Oncology Education Collaborative Study Group – Medical Student Curriculum
Cancer can spread outside of the initial organ = metastatic disease

Combining local and systemic therapies for cancer

Risk of Systemic Disease

Local Disease Extent

- Leukemia
- Metastatic solid tumors
- Skin, Early stage Larynx
- Breast
- Colorectal
- Prostate
- Lung, Pancreas
- Low Grade Sarcoma, Brain

Adapted from ASCO.org
Radiation is a local therapy

• Palliative – to help with a symptom (not curative)
 • Pain
 • Bleeding
 • Neurologic symptoms
• Definitive – curative intent without surgery
• Neoadjuvant – before surgery
• Adjuvant – after surgery

How to choose local therapies (surgery, RT or both)

• Radiation may allow a smaller surgery
 • Breast – mastectomy vs partial mastectomy + RT
 • Extremity sarcoma – amputation vs wide local excision + RT
• Adjuvant RT (based on surgical findings)
 • Lung
 • H&N
 • Prostate
 • Brain
• Neoadjuvant RT (RT before surgery)
 • Rectal
When is RT often used alone (instead of surgery) ?

Examples include:
Early or advanced head & neck cancer
Advanced cervical cancer
Prostate

Patients who are not candidates for surgery
Surgeries that would otherwise be too extensive
Cancers that outcomes are similar between radiation and surgery
Careful risk-benefit assessment

Role of chemotherapy

<table>
<thead>
<tr>
<th>Cancer Site</th>
<th>Radiosensitization</th>
<th>Systemic Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Colorectal</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cervix</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Head & Neck</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lung</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Emerging roles of immunotherapy and targeted therapies!
Outline

- What is cancer and its impact?
- How do we treat cancer?
- **What is radiation?**
 - Case example
 - Treatment planning examples

Radiation Therapy: Brief History

1895 Roentgen discovers x-rays
1896 First diagnostic x-ray
 - locate piece of knife from stabbing
1897 Fruend treats patient with hairy mole
1898 Curies report discovery of radium
1898 Becquerel discovers radioactivity
1922 Coutard/Hautant report cure larynx cancer

- From Hall (Radiobiology for Radiobiologists), Halperin, Perez and Brady

![Early Roentgen image January, 1896.](image)
Radioactivity

• 1896 - Henri Becquerel
 - experimenting with uranium salts
 - photographic plate exposed
• Discovered radioactivity while experimenting with uranium salts which exposed a photographic plate
• Pierre and Marie Curie discover radium and polonium in 1898
• These elements emitted α, β and γ rays

Becquerel’s photographic plate fogged by radiation from uranium salts.

X-rays and Gamma Radiation

• Both are forms of ionizing radiation
• X-rays and γ-rays both photons
 - X-ray: people-made: electron strikes target
 - γ-rays: nuclear decay (can be naturally occurring)
Radiation kills cancer cells by DNA damage

- Normal cells can repair DNA damage
- Cancer cells are geared only to grow and spread and cannot effectively repair DNA damage
- Cancer cells then eventually die = mitotic catastrophe

From Eric Hall

Fractionating can make radiation safer for normal tissues

- Fractionating = many small doses of radiation instead of fewer larger dose
- Rapidly growing tissues
 - Tumors and some normal tissues (mucosa, marrow, skin)
 - Still are impacted in terms of efficacy (tumor) or side effect (normal tissue) with fractionating
- Slowly growing tissues
 - Many critical normal tissues (lung, brain, muscle, nerve, blood vessels).
 - Have much fewer side effects with fractionation
Dose and fractionation

- Radiation dose is measured in the unit Gray (Gy)
- Dose varies based on treatment site, type of tumor, other therapies
- Typically delivered 5 days per week (M-F) for up to 7 weeks
- Usually the dose is 1.8-2.0 Gy per day (many exceptions)

Linear accelerator – “standard” radiation treatment machines

http://info.oncologysystems.com/average-lifespan-elekta-linear-accelerator-parts/
CyberKnife – specialized for radiosurgery

Gamma Knife – specialized for brain radiosurgery
Brachytherapy – implanted radiation

- Procedure based radiation technique
- Can involved implanted seeds (that remain in place indefinitely)
- Can involved temporary catheters (that are removed after radiation treatment)

| Sites |
|----------------|----------------|
| Prostate |
| Cervix |
| Endometrial |
| Breast |
| Esophageal |
| Sarcoma |
| Skin |

Radiation Implants: Uterine Cervix
Radiation Implants: Prostate

Intraoperative Radiation
Outline

- What is cancer and its impact?
- How do we treat cancer?
- What is radiation?
- Case example
- Treatment planning examples

Timeline for a patient

Consult | Simulation | Start treatments | Follow up

Immediate to months | “Making the treatment plan: = Contour, plan, quality assurance | Weekly office visits | Years

Usually 1-2 weeks | Usually 4-6 weeks, depends on type of cancer

Adapted from ROECSG – Radiation Oncology Education Collaborative Study Group – Medical Student Curriculum
Case

- 57 y/o female presents to PCP with cough and shortness of breath for the past 6 weeks
- 25 lb weight loss
- Current smoker, 2 packs per day x 30 years
- Physical Examination: decreased breath sounds in upper right lung
- Chest x-ray – right upper lobe lung mass

Concerning for lung cancer

Diagnostic Tests

- Biopsy (gives a cancer diagnosis)
- Staging
 - How large is the tumor?
 - Where is the tumor located?
 - Has the tumor spread?

BOTH biopsy and staging are needed to develop a treatment plan
Diagnostic Tests and Treatment

- Biopsy – guided with a CT scan OR by bronchoscopy
- Staging imaging –
 - PET-CT
 - Brain MRI
- For this patient – biopsy is adenocarcinoma, staging shows the known right upper lobe mass, mediastinal lymph nodes. No disease outside of the chest. Stage III non-small cell lung cancer
- TREATMENT: 30 radiation treatments, concurrent chemotherapy, adjuvant immunotherapy

What does the radiation oncologist do in clinic?

- Full and extensive history and physical relating to cancer diagnosis
- Although you are treating the tumor, knowing your patient’s other medical problems and “performance status” will help you care for them
What do radiation oncologists think about during initial consult?

- History: full and detailed in chronologic order. Include presenting symptoms, work-up, any staging studies and pertinent laboratories
- Past medical/surgical history
 - **Prior radiation treatment (breast cancer and prior Hodgkin’s)**
 - **Pacemaker or ICD**
 - **Pregnant?**
 - **Prior chemotherapy**
 - **Connective tissue disorders**
 - **Family history: full family cancer history**
- Social history: family, plans for future children?, employment, **living situation/location**, support structure, smoking, substance abuse

What do radiation oncologists think about during initial consult?

- Physical exam
 - Complete physical exam (focused)
 - More extensive exam of pertinent anatomical regions
 - Breast
 - Prostate
 - Glioblastoma
 - Bone metastasis
 - Lung
 - Performance status – how is the patient doing in terms of completing daily tasks, working, etc
Performance Status

Karnofsky Performance Score

• 100% – normal, no complaints, no signs of disease
• 90% – capable of normal activity, few symptoms or signs of disease
• 80% – normal activity with some difficulty, some symptoms or signs
• 70% – caring for self, not capable of normal activity or work
• 60% – requiring some help, can take care of most personal requirements
• 50% – requires help often, requires frequent medical care
• 40% – disabled, requires special care and help
• 30% – severely disabled, hospital admission indicated but no risk of death
• 20% – very ill, urgently requiring admission, requires supportive measures or treatment
• 10% – moribund, rapidly progressive fatal disease processes
• 0% – death.

ECOG/Zubrod

• 0 – Asymptomatic (Fully active, able to carry on all predisease activities without restriction)
• 1 – Symptomatic but completely ambulatory (Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature. For example, light housework, office work)
• 2 – Symptomatic, <50% in bed during the day (Ambulatory and capable of all self care but unable to carry out any work activities. Up and about more than 50% of waking hours)
• 3 – Symptomatic, >50% in bed, but not bedbound (Capable of only limited self-care, confined to bed or chair 50% or more of waking hours)
• 4 – Bedbound (Completely disabled. Cannot carry on any self-care. Totally confined to bed or chair)
• 5 – Death

What do radiation oncologists think about during initial consult?

• Assessment
 • Always stage the patient
 • Early breast pT1bN0M0 Stage IA
 • Intermediate-risk prostate cT2bN0M0, PSA 14.5, GS 3+4
 • Glioblastoma multiforme WHO grade IV
 • Bone metastasis from lung cT3N3M1 Stage IV
 • Lung Cancer cT3N3 Stage III
 • Plan
 • Could involve surgery, systemic therapy, RT
 • Does not always involve RT!!
Proceeding with radiation treatments

- Simulation = CT scan
 - Determined by MD:
 - How to position the patient
 - What part of the body to scan
 - Contrast (yes/no)
 - Respiratory gating (yes/no)
 - Patient is set-up, scanned, and marked (tattoo) by radiation therapists

CT Simulation
Treatment Planning

- MANY steps involved
 - Drawing targets
 - Designing fields
 - Creating radiation plan (dose)
 - MULTIPLE quality assurance steps
- Involved multiple people
 - Radiation oncologist
 - Dosimetrists
 - Medical physicists

Treatment delivery
Side effects of radiation

- **Fatigue**
- Otherwise depends on treatment site/volume (and chemotherapy) – where the radiation is pointed!
- **Stage III lung**
 - Acute (short-term)
 - Esophagitis – “sticking” sensation when swallowing, pain with swallowing
 - Chronic (long-term)
 - Radiation pneumonitis – lung inflammation
 - Pericarditis – inflammation of the lining of the heart
 - Cardiovascular disease – due to radiation the heart and coronary arteries
 - Secondary malignancy

Other radiation side effects – where the beam is aimed!

- **Pelvis** – diarrhea, dysuria, bowel obstruction, ulceration, menopause, erectile dysfunction
- **Brain** – nausea, headache, radiation necrosis, memory problems
- **Breast** – skin irritation, scar tissue, brachial plexus injury
- **H&N** – dry mouth, irritation inside mouth, skin irritation
Outline

• What is cancer and its impact?
• How do we treat cancer?
• What is radiation?
• Case example
• Treatment planning examples

Treatment planning - lung

• Cover target (tumor + margin with desired dose
• Spare organs at risk
 • Spinal cord
 • Esophagus
 • Heart
 • Normal lung

Image from: Translational Oncology Research, Vol 1, No 4, Dec 2012.
Tangents Photons

Treatment planning - breast

Treating through something, use penetrating beam

Treatment planning – breast boost

If you want the beam to “stop”, use non-penetrating types of radiation
Treatment planning - prostate

Treatment planning - breast
Treatment planning – prone breast

Adapted from ROECSG – Radiation Oncology Education
Collaborative Study Group – Medical Student Curriculum

Treatment planning - brain

Adapted from ROECSG – Radiation Oncology Education
Collaborative Study Group – Medical Student Curriculum
Radiosurgery/Stereotactic Body Radiotherapy

- Specialized technique
 - High RT dose per fraction
 - Tight margin
 - Image guidance
 - Localization at time of treatment
Summary

• Oncologic care is complicated and requires a team
• Radiation can be used alone to cure cancer, or with other modalities
• The use of Radiation/Surgery/Chemo depends on:
 • The cancer’s behavior; i.e. its likelihood to spread locally vs distantly, and
 • The functional impact of surgery vs RT as the local therapy
• Radiation works by causing damage to the DNA.
• There are many types of radiation techniques
 • External beam radiation (x-rays or electrons)
 • Radiosurgery
 • Brachytherapy
 • Intraoperative radiotherapy
• The job of the radiation oncologist includes working with a multidisciplinary team, selecting and designing RT treatments (ANATOMY!), managing treatment toxicities.

References

• Some slides courtesy of
 • Dr. Larry Marks
 • Dr. Jessica Wilson
 • ROECSG (Radiation Oncology Education Collaborative Study Group)
• Other references:
 • ASCO.org – Oncology 101
 • ASTRO.org – Overview of RT for Healthcare Professionals
 • ASTRO.org – Radiation Oncology for Medical Students
 • Gunderson and Tepper, Clinical Radiation Oncology, 4th ed